Publications

  1. N. Lokachari, G. Kukkadapu, H. Song, G. Vanhove, M. Lailliau, G. Dayma, Z. Serinyel, K. Zhang, R. Dauphin, B. Etz, S. Kim, M. Steglich, A. Bodi, G. Fioroni, P. Hemberger, S.S. Matveev, A.A. Konnov, P. Dagaut, S.W. Wagnon, W.J. Pitz, “A comprehensive experimental and kinetic modeling study of di-isobutylene isomers: Part 1,” Combustion and Flame, 2023, https://doi.org/10.1016/j.combustflame.2022.112301
  2. F.D.F. Chuahy, C.S. Sluder, S.J. Curran, G. Kukkadapu, S.W. Wagnon, R. Whitesides, “Numerical assessment of fuel physical properties on high-dilution diesel advanced compression ignition combustion,” Applications in Energy and Combustion Science, 2023, https://doi.org/10.1016/j.jaecs.2022.100102
  3. S. Dong et al., “Understanding the low-temperature chemistry of 1,2,4-trimethylbenzene,” Proceedings of the Combustion Institute, 2023, https://doi.org/10.1016/j.proci.2022.08.106
  4. R. Fang, G. Kukkadapu, S. W. Wagnon, W. J. Pitz, and C.-J. Sung, “An experimental and modeling study on autoignition of 2-phenylethanol and its blends with n-heptane,” Proceedings of the Combustion Institute, 2023, https://doi.org/10.1016/j.proci.2022.08.121
  5. T. Chatterjee et al., “Experimental and kinetic modeling study of the low- temperature and high-pressure combustion chemistry of straight chain pentanol isomers: 1-, 2- and 3-Pentanol,” Proceedings of the Combustion Institute, 2023, https://doi.org/10.1016/j.proci.2022.08.027.
  6. S. Cheng, C. Saggese, S.S. Goldsborough, S.W. Wagnon, W.J. Pitz, “Chemical kinetic interactions of NO with a multi-component gasoline surrogate: Experiments and modeling,” Proceedings of the Combustion Institute, 2023, https://doi.org/10.1016/j.proci.2022.07.212
  7. N. Lokachari et al., “A comprehensive experimental and kinetic modeling study of di-isobutylene isomers: Part 2,” Combustion and Flame, 2023, https://doi.org/10.1016/j.combustflame.2022.112547
  8. S. Suzuki and W. J. Pitz, “Fuel-rich oxidation of gasoline surrogate components in an atmospheric flow reactor,” Combustion and Flame, 2023, https://doi.org/10.1016/j.combustflame.2023.112623
  9. S. Suzuki et al., “Blending effect of methanol on the formation of polycyclic aromatic hydrocarbons in the oxidation of toluene,” Proceedings of the Combustion Institute, 2023, https://doi.org/10.1016/j.proci.2022.09.045
  10. S.S. Nagaraja et al., “An experimental and modeling study of tetramethyl ethylene pyrolysis with polycyclic aromatic hydrocarbon formation,” Proceedings of the Combustion Institute, 2023, https://doi.org/10.1016/j.proci.2022.10.005
  11. T. Wang et al., “Computational thermochemistry of oxygenated polycyclic aromatic hydrocarbons and relevant radicals,” Combustion and Flame, 2023, https://doi.org/10.1016/j.combustflame.2022.112484
  12. D. E. Couch et al., “Molecular weight growth by the phenyl + cyclopentadienyl reaction: Well-skipping, ring-opening, and dissociation,” Combustion and Flame, 2023, https://doi.org/10.1016/j.combustflame.2022.112439
  13. F. Tagliante et al., “The role of cool-flame fluctuations in high-pressure spray flames, studied using high-speed optical diagnostics and Large-Eddy Simulations,” Proceedings of the Combustion Institute, 2023, https://doi.org/10.1016/j.proci.2022.07.242
  14. M.A. Burnett, J. Kim, S.W. Wagnon, A.B. Mansfield, M.S. Wooldridge, “An Experimental Study of 2-Propanol Pyrolysis Chemistry,” Journal of Physical Chemistry A, 2022, https://doi.org/10.1021/acs.jpca.2c06855
  15. S. Cheng et al., “Replicating HCCI-like autoignition behavior: What gasoline surrogate fidelity is needed?,” Applications in Energy and Combustion Science, 2022, https://doi.org/10.1016/j.jaecs.2022.100091
  16. C.S. Mergulhão, Y. Fenard, G. Kukkadapu, S.W. Wagnon, G. Vanhove, “Investigating the kinetic effect of prenol on iso-octane auto-ignition by means of an experimental and modeling study,” Fuel, 2022, https://doi.org/10.1016/j.fuel.2022.125225
  17. S. Cheng, C. Saggese, S.S. Goldsborough, S.W. Wagnon, W.J. Pitz, “Unraveling the role of EGR olefins at advanced combustion conditions in the presence of nitric oxide: Ethylene, propene and isobutene,” Combustion and Flame, 2022, https://doi.org/10.1016/j.combustflame.2022.112344
  18. E. Grajales-González et al., “An experimental and kinetic modeling study of the pyrolysis of isoprene, a significant biogenic hydrocarbon in naturally occurring vegetation fires,” Combustion and Flame, 2022, https://doi.org/10.1016/j.combustflame.2022.112206
  19. S. Suzuki et al., “Formation of PAHs, phenol, benzofuran, and dibenzofuran in a flow reactor from the oxidation of ethylene, toluene, and n-decane,” Combustion and Flame, vol. 241, pp. 112136–112136, Jul. 2022, doi: https://doi.org/10.1016/j.combustflame.2022.112136.
  20. K.C. Kalvakala et al., “Numerical analysis of soot emissions from gasoline-ethanol and gasoline-butanol blends under gasoline compression ignition conditions,” Fuel, 2022, https://doi.org/10.1016/j.fuel.2022.123740
  21. B. Köroğlu et al., “The influence of cooling rate on condensation of iron, aluminum, and uranium oxide nanoparticles,” Journal of Aerosol Science, 2022, https://doi.org/10.1016/j.jaerosci.2022.105959
  22. S. Dong et al., “A new detailed kinetic model for surrogate fuels: C3MechV3.3,” Applications in Energy and Combustion Science, vol. 9, pp. 100043–100043, Mar. 2022, doi: https://doi.org/10.1016/j.jaecs.2021.100043.
  23. D.E. Couch, G. Kukkadapu, A.J. Zhang, A.W. Jasper, C.A. Taatjes, N. Hansen, “The role of radical-radical chain-propagating pathways in the phenyl + propargyl reaction,” Proceedings of the Combustion Institute, 2023, https://doi.org/10.1016/j.proci.2022.09.012
  24. G.M. Fioroni et al., “Chemical kinetic basis of synergistic blending for research octane number,” Fuel, 2022, https://doi.org/10.1016/j.fuel.2021.121865
  25. N.-H. Kim et al., “Experimental and Numerical Study on the Effect of Nitric Oxide on Autoignition and Knock in a Direct-Injection Spark-Ignition Engine,” SAE International Journal of Advances and Current Practices in Mobility, 2022, https://doi.org/10.4271/2022-01-1005
  26. C. Saggese, M. Commodo, D. Chen, “Editorial: Particulate Matter Emissions From Conventional and Reformulated Fuel Combustion: Advances in Experiments and Simulations,” Frontiers in Mechanical Engineering, 2022, https://doi.org/10.3389/fmech.2022.892293
  27. N. Hansen, B. Yang, M. Braun‐Unkhoff, A. Ramirez, Goutham Kukkadapu, “Molecular-growth pathways in premixed flames of benzene and toluene doped with propyne,” Combustion and Flame, 2022, https://doi.org/10.1016/j.combustflame.2022.112075
  28. Y. Li, T. Wang, K.K. Yalamanchi, G. Kukkadapu, S.M. Sarathy, “Accurate thermochemistry prediction of extensive Polycyclic aromatic hydrocarbons (PAHs) and relevant radicals,” Combustion and Flame, 2022, https://doi.org/10.1016/j.combustflame.2022.112159
  29. K.C. Kalvakala, P. Pal, G. Kukkadapu, M. McNenly, S. Aggarwal, “Numerical Study of PAHs and Soot Emissions from Gasoline–Methanol, Gasoline–Ethanol, and Gasoline–n-Butanol Blend Surrogates,” Energy & Fuels, 2022, https://doi.org/10.1021/acs.energyfuels.2c00897
  30. S. Richter et al., “A combined experimental and modeling study of combustion properties of an isoparaffinic alcohol-to-jet fuel,” Combustion and Flame, 2022, https://doi.org/10.1016/j.combustflame.2022.111994
  31. Fang, R., Saggese, C., Wagnon, S.W., Sahu, A.B., Curran, H.J., Pitz, W.J., Sung, C.-J., "Effect of nitric oxide and exhaust gases on gasoline surrogate autoignition: iso-octane experiments and modeling," Combustion and Flame, 2022, 236, 111807. https://doi.org/10.1016/j.combustflame.2021.111807
  32. Grégoire, C.M., Westbrook, C.K., Kukkadapu, G., Cooper, S.P., Alturaifi, S.A., Mathieu, O., Petersen, E.L., "Shock-tube spectroscopic CO and H2O measurements during 2-methyl-1-butene combustion and chemical kinetics modeling," Combustion and Flame, 2022, 238, 111919. https://doi.org/10.1016/j.combustflame.2021.111919
  33. Rahman, R.K., Barak, S., Wagnon, S.W., Kukkadapu, G., Pitz, W.J., Vasu, S.S., "Shock tube investigation of high-temperature, extremely-rich oxidation of several co-optima biofuels for spark-ignition engines," Combustion and Flame, 2022, 236, 111794. https://doi.org/10.1016/j.combustflame.2021.111794
  34. Barraza-Botet, C.L., Liu, C., Kim, J.H., Wagnon, S.W., Wooldridge, M.S., "Effects of stereoisomeric structure and bond location on the ignition and reaction pathways of hexenes," International Journal of Chemical Kinetics, 2021, 53(2), 287-298. https://doi.org/10.1002/kin.21442
  35. Cheng, S., Goldsborough, S.S., Wagnon, S.W., Pitz, W.J., "Probing intermediate temperature heat release in autoignition of C3-C4 iso-alcohol/gasoline blends," Combustion and Flame, 2021, 233, 111602. https://doi.org/10.1016/j.combustflame.2021.111602
  36. Cheng, S., Kang, D., Goldsborough, S.S., Saggese, C., Wagnon, S.W., Pitz, W.J., "Experimental and modeling study of C2-C4 alcohol autoignition at intermediate temperature conditions," Proceedings of the Combustion Institute, 2021, 38(1), 709-717. https://doi.org/10.1016/j.proci.2020.08.005
  37. Cheng, S., Saggese, C., Kang, D., Goldsborough, S.S., Wagnon, S.W., Kukkadapu, G., Zhang, K., Mehl, M., Pitz, W.J., "Autoignition and preliminary heat release of gasoline surrogates and their blends with ethanol at engine-relevant conditions: Experiments and comprehensive kinetic modeling," Combustion and Flame, 2021, 228, 57-77. https://doi.org/10.1016/j.combustflame.2021.01.033
  38. Cheng, S., Scott Goldsborough, S., Saggese, C., Wagnon, S.W., Pitz, W.J., "New insights into fuel blending effects: Intermolecular chemical kinetic interactions affecting autoignition times and intermediate-temperature heat release," Combustion and Flame, 2021, 233, 111559. https://doi.org/10.1016/j.combustflame.2021.111559
  39. Cuoci, A., Avedisian, C.T., Brunson, J.D., Guo, S., Dalili, A., Wang, Y., Mehl, M., Frassoldati, A., Seshadri, K., Dec, J.E., Lopez-Pintor, D., "Simulating combustion of a seven-component surrogate for a gasoline/ethanol blend including soot formation and comparison with experiments," Fuel, 2021, 288, 119451. https://doi.org/10.1016/j.fuel.2020.119451
  40. D.F. Chuahy, F., Moses-DeBusk, M., Curran, S.J., Storey, J.M.E., Wagnon, S.W., "The effects of distillation characteristics and aromatic content on low-load gasoline compression ignition (GCI) performance and soot emissions in a multi-cylinder engine," Fuel, 2021, 299, 120893. https://doi.org/10.1016/j.fuel.2021.120893
  41. Dong, S., Aul, C., Gregoire, C., Cooper, S.P., Mathieu, O., Petersen, E.L., Rodriguez, J., Mauss, F., Wagnon, S.W., Kukkadapu, G., Pitz, W.J., Curran, H.J., "A comprehensive experimental and kinetic modeling study of 1-hexene," Combustion and Flame, 2021, 232, 111516. https://doi.org/10.1016/j.combustflame.2021.111516
  42. Dong, S., Zhang, K., Ninnemann, E.M., Najjar, A., Kukkadapu, G., Baker, J., Arafin, F., Wang, Z., Pitz, W.J., Vasu, S.S., Sarathy, S.M., Senecal, P.K., Curran, H.J., "A comprehensive experimental and kinetic modeling study of 1- and 2-pentene," Combustion and Flame, 2021, 223, 166-180. https://doi.org/10.1016/j.combustflame.2020.09.012
  43. Dong, S., Zhang, K., Senecal, P.K., Kukkadapu, G., Wagnon, S.W., Barrett, S., Lokachari, N., Panigaphy, S., Pitz, W.J., Curran, H.J., "A comparative reactivity study of 1-alkene fuels from ethylene to 1-heptene," Proceedings of the Combustion Institute, 2021, 38(1), 611-619. https://doi.org/10.1016/j.proci.2020.07.053
  44. Goldsborough, S.S., Cheng, S., Kang, D., Saggese, C., Wagnon, S.W., Pitz, W.J., "Effects of isoalcohol blending with gasoline on autoignition behavior in a rapid compression machine: Isopropanol and isobutanol," Proceedings of the Combustion Institute, 2021, 38(4), 5363-5371. https://doi.org/10.1016/j.proci.2020.08.027
  45. Grégoire, C.M., Westbrook, C.K., Alturaifi, S.A., Mathieu, O., Petersen, E.L., "Shock-tube spectroscopic water measurements and detailed kinetics modeling of 1-pentene and 3-methyl-1-butene," International Journal of Chemical Kinetics, 2021, 53(1), 67-83. https://doi.org/10.1002/kin.21426
  46. Guzman, J., Kukkadapu, G., Brezinsky, K., Westbrook, C.K., "Oxidation of an iso-paraffinic alcohol-to-jet fuel and n-heptane mixture: An experimental and modeling study," International Journal of Chemical Kinetics, 2021, 53(9), 1014-1035. https://doi.org/10.1002/kin.21501
  47. Hansen, N., Kukkadapu, G., Chen, B., Dong, S., Curran, H.J., Taatjes, C.A., Eskola, A.J., Osborn, D.L., Sheps, L., Pitz, W.J., Moshammer, K., Jasper, A.W., Chen, W., Yang, J., Wang, Z., "The impact of the third O2addition reaction network on ignition delay times of neo-pentane," Proceedings of the Combustion Institute, 2021, 38(1), 299-307. https://doi.org/10.1016/j.proci.2020.07.017
  48. Ilies, B.D., Khandavilli, M., Li, Y., Kukkadapu, G., Wagnon, S.W., Jameel, A.G.A., Sarathy, S.M., "Probing the chemical kinetics of minimalist functional group gasoline surrogates," Energy and Fuels, 2021, 35(4), 3315-3332. https://doi.org/10.1021/acs.energyfuels.0c02815
  49. Issayev, G., Djebbi, K., Kukkadapu, G., Mehl, M., Wagnon, S.W., Pitz, W.J., Farooq, A., "Experimental and kinetic modeling study of tetralin: A naphtheno-aromatic fuel for gasoline, jet and diesel surrogates," Proceedings of the Combustion Institute, 2021, 38(1), 641-649. https://doi.org/10.1016/j.proci.2020.07.059
  50. Kalvakala, K., Pal, P., Wu, Y., Kukkadapu, G., Kolodziej, C., Gonzalez, J.P., Waqas, M.U., Lu, T., Aggarwal, S.K., Som, S., "Numerical analysis of fuel effects on advanced compression ignition using a cooperative fuel research engine computational fluid dynamics model," Journal of Energy Resources Technology, Transactions of the ASME, 2021, 143(10), 102304. https://doi.org/10.1115/1.4050490
  51. Killingsworth, N.J., Nguyen, T.M., Brown, C., Kukkadapu, G., Manin, J., "Investigating the Effects of Chemical Mechanism on Soot Formation Under High-Pressure Fuel Pyrolysis," Frontiers in Mechanical Engineering, 2021, 7, 765478. https://doi.org/10.3389/fmech.2021.765478
  52. Kukkadapu, G., Wagnon, S.W., Pitz, W.J., Hansen, N., "Identification of the molecular-weight growth reaction network in counterflow flames of the C3H4isomers allene and propyne," Proceedings of the Combustion Institute, 2021, 38(1), 1477-1485. https://doi.org/10.1016/j.proci.2020.07.130
  53. Kundu, P., Xu, C., Som, S., Temme, J., Kweon, C.-B.M., Lapointe, S., Kukkadapu, G., Pitz, W.J., "Implementation of multi-component diesel fuel surrogates and chemical kinetic mechanisms for engine combustion simulations," Transportation Engineering, 2021, 3, 100042. https://doi.org/10.1016/j.treng.2020.100042
  54. Lokachari, N., Wagnon, S.W., Kukkadapu, G., Pitz, W.J., Curran, H.J., "Experimental and Kinetic Modeling Study of 3-Methyl-2-butenol (Prenol) Oxidation," Energy and Fuels, 2021, 35(17), 13999-14009. https://doi.org/10.1021/acs.energyfuels.1c01530
  55. Lokachari, N., Wagnon, S.W., Kukkadapu, G., Pitz, W.J., Curran, H.J., "An experimental and kinetic modeling study of cyclopentane and dimethyl ether blends," Combustion and Flame, 2021, 225, 255-271. https://doi.org/10.1016/j.combustflame.2020.10.017
  56. Mergulhão, C.S., Carstensen, H.-H., Song, H., Wagnon, S.W., Pitz, W.J., Vanhove, G., "Probing the antiknock effect of anisole through an ignition, speciation and modeling study of its blends with isooctane," Proceedings of the Combustion Institute, 2021, 38(1), 739-748. https://doi.org/10.1016/j.proci.2020.08.013
  57. Nagaraja, S.S., Power, J., Kukkadapu, G., Dong, S., Wagnon, S.W., Pitz, W.J., Curran, H.J., "A single pulse shock tube study of pentene isomer pyrolysis," Proceedings of the Combustion Institute, 2021, 38(1), 881-889. https://doi.org/10.1016/j.proci.2020.06.069
  58. Panigrahy, S., Liang, J., Nagaraja, S.S., Zuo, Z., Kim, G., Dong, S., Kukkadapu, G., Pitz, W.J., Vasu, S.S., Curran, H.J., "A comprehensive experimental and improved kinetic modeling study on the pyrolysis and oxidation of propyne," Proceedings of the Combustion Institute, 2021, 38(1), 479-488. https://doi.org/10.1016/j.proci.2020.06.320
  59. Pitz, W.J., Liang, J., Kukkadapu, G., Zhang, K., Conroy, C., Bugler, J., Curran, H.J., "A detailed chemical kinetic modeling and experimental investigation of the low- and high-temperature chemistry of n-butylcyclohexane," International Journal of Chemical Kinetics, 2021, 53(3), 465-475. https://doi.org/10.1002/kin.21457
  60. Saggese, C., Thomas, C.M., Wagnon, S.W., Kukkadapu, G., Cheng, S., Kang, D., Goldsborough, S.S., Pitz, W.J., "An improved detailed chemical kinetic model for C3-C4 linear and iso-alcohols and their blends with gasoline at engine-relevant conditions," Proceedings of the Combustion Institute, 2021, 38(1), 415-423. https://doi.org/10.1016/j.proci.2020.07.023
  61. Sahu, A.B., Mohamed, A.A.E.-S., Panigrahy, S., Saggese, C., Patel, V., Bourque, G., Pitz, W.J., Curran, H.J., "An experimental and kinetic modeling study of NOx sensitization on methane autoignition and oxidation," Combustion and Flame, 2021, , 111746. https://doi.org/10.1016/j.combustflame.2021.111746
  62. Suzuki, S., Obuchi, A., Kukkadapu, G., Kinoshita, K., Takeda, Y., Oguma, M., Tanaka, K., Pitz, W.J., "Measurements of Intermediate Species in Fuel-Rich Oxidation of Ethylene, Toluene, andn-Decane," Energy and Fuels, 2021, 35(18), 14924-14940. https://doi.org/10.1021/acs.energyfuels.1c01786
  63. Wang, M., Kukkadapu, G., Fang, R., Pitz, W.J., Sung, C.-J., "Autoignition study of iso-cetane/tetralin blends at low temperature," Combustion and Flame, 2021, 228, 415-429. https://doi.org/10.1016/j.combustflame.2021.02.018
  64. Westbrook, C., Heufer, K.A., Wildenberg, A., "Key Chemical Kinetic Steps in Reaction Mechanisms for Fuels from Biomass: A Perspective," Energy and Fuels, 2021, 35(19), 15339-15359. https://doi.org/10.1021/acs.energyfuels.1c02210
  65. Cheng, S., Kang, D., Fridlyand, A., Goldsborough, S.S., Saggese, C., Wagnon, S., McNenly, M.J., Mehl, M., Pitz, W.J., Vuilleumier, D., "Autoignition behavior of gasoline/ethanol blends at engine-relevant conditions," Combustion and Flame, 2020, 216, 369-384. https://doi.org/10.1016/j.combustflame.2020.02.032
  66. Chuahy, D.F., Splitter, D., Boronat, V., Wagnon, S.W., "Enabling high compression ratio in boosted spark ignition engines: Thermodynamic trajectory and fuel chemistry effects on knock," Combustion and Flame, 2020, 222, 446-459. https://doi.org/10.1016/j.combustflame.2020.09.010
  67. Fang, R., Kukkadapu, G., Wang, M., Wagnon, S.W., Zhang, K., Mehl, M., Westbrook, C.K., Pitz, W.J., Sung, C.-J., "Fuel molecular structure effect on autoignition of highly branched iso-alkanes at low-to-intermediate temperatures: Iso-octane versus iso-dodecane," Combustion and Flame, 2020, 214, 152-166. https://doi.org/10.1016/j.combustflame.2019.12.037
  68. Killingsworth, N.J., McNenly, M.J., Whitesides, R.A., Wagnon, S.W., "Cloud based tool for analysis of chemical kinetic mechanisms," Combustion and Flame, 2020, 221, 170-179. https://doi.org/10.1016/j.combustflame.2020.06.010
  69. Kwon, H., Lapointe, S., Zhang, K., Wagnon, S.W., Pitz, W.J., Zhu, J., McEnally, C.S., Pfefferle, L.D., Xuan, Y., "Sooting tendencies of 20 bio-derived fuels for advanced spark-ignition engines," Fuel, 2020, 276, 118059. https://doi.org/10.1016/j.fuel.2020.118059
  70. Laich, A.R., Ninnemann, E., Neupane, S., Rahman, R., Barak, S., Pitz, W.J., Goldsborough, S.S., Vasu, S.S., "High-pressure shock tube study of ethanol oxidation: Ignition delay time and CO time-history measurements," Combustion and Flame, 2020, 212, 486-499. https://doi.org/10.1016/j.combustflame.2019.11.016
  71. Lokachari, N., Panigrahy, S., Kukkadapu, G., Kim, G., Vasu, S.S., Pitz, W.J., Curran, H.J., "The influence of iso-butene kinetics on the reactivity of di-isobutylene and iso-octane," Combustion and Flame, 2020, 222, 186-195. https://doi.org/10.1016/j.combustflame.2020.08.007
  72. Monge-Palacios, M., Grajales-González, E., Kukkadapu, G., Sarathy, S.M., "Kinetics of the benzyl + HO2and benzoxyl + OH barrierless association reactions: fate of the benzyl hydroperoxide adduct under combustion and atmospheric conditions," Physical Chemistry Chemical Physics, 2020, 22(16), 9029-9039. https://doi.org/10.1039/d0cp00752h
  73. Nagaraja, S.S., Kukkadapu, G., Panigrahy, S., Liang, J., Lu, H., Pitz, W.J., Curran, H.J., "A pyrolysis study of allylic hydrocarbon fuels," International Journal of Chemical Kinetics, 2020, 52(12), 964-978. https://doi.org/10.1002/kin.21414
  74. Nagaraja, S.S., Liang, J., Dong, S., Panigrahy, S., Sahu, A., Kukkadapu, G., Wagnon, S.W., Pitz, W.J., Curran, H.J., "A hierarchical single-pulse shock tube pyrolysis study of C2–C6 1-alkenes," Combustion and Flame, 2020, 219, 456-466. https://doi.org/10.1016/j.combustflame.2020.06.021
  75. Shao, C., Kukkadapu, G., Wagnon, S.W., Pitz, W.J., Sarathy, S.M., "PAH formation from jet stirred reactor pyrolysis of gasoline surrogates," Combustion and Flame, 2020, 219, 312-326. https://doi.org/10.1016/j.combustflame.2020.06.001
  76. Wang, M., Kukkadapu, G., Zhang, K., Wagnon, S.W., Mehl, M., Pitz, W.J., Westbrook, C.K., Sung, C.-J., "Autoignition of CRC diesel surrogates at low temperature combustion conditions: Rapid compression machine experiments and modeling," Combustion and Flame, 2020, 219, 178-197. https://doi.org/10.1016/j.combustflame.2020.05.017
  77. Zhang, K., Capriolo, G., Kim, G., Almansour, B., Terracciano, A.C., Vasu, S.S., Pitz, W.J., Konnov, A.A., "Experimental and Kinetic Modeling Study of Laminar Burning Velocities of Cyclopentanone and Its Binary Mixtures with Ethanol and n-Propanol," Energy and Fuels, 2020, 34(9), 11408-11416. https://doi.org/10.1021/acs.energyfuels.0c01565
  78. Ahmed, A., Pitz, W.J., Cavallotti, C., Mehl, M., Lokachari, N., Nilsson, E.J.K., Wang, J.-Y., Konnov, A.A., Wagnon, S.W., Chen, B., Wang, Z., Kim, S., Curran, H.J., Klippenstein, S.J., Roberts, W.L., Sarathy, S.M., "Small ester combustion chemistry: Computational kinetics and experimental study of methyl acetate and ethyl acetate," Proceedings of the Combustion Institute, 2019, 37(1), 419-428. https://doi.org/10.1016/j.proci.2018.06.178
  79. Chen, B., Wang, Z., Wang, J.-Y., Wang, H., Togbé, C., Alonso, P.E., Almalki, M., Mehl, M., Pitz, W.J., Wagnon, S.W., Zhang, K., Kukkadapu, G., Dagaut, P., Mani Sarathy, S., "Exploring gasoline oxidation chemistry in jet stirred reactors," Fuel, 2019, 236, 1282-1292. https://doi.org/10.1016/j.fuel.2018.09.055
  80. Davidson, D.F., Shao, J.K., Choudhary, R., Mehl, M., Obrecht, N., Hanson, R.K., "Ignition delay time measurements and modeling for gasoline at very high pressures," Proceedings of the Combustion Institute, 2019, 37(4), 4885-4892. https://doi.org/10.1016/j.proci.2018.08.032
  81. Fridlyand, A., Goldsborough, S.S., Al Rashidi, M., Sarathy, S.M., Mehl, M., Pitz, W.J., "Low temperature autoignition of 5-membered ring naphthenes: Effects of substitution," Combustion and Flame, 2019, 200, 387-404. https://doi.org/10.1016/j.combustflame.2018.10.028
  82. Guzman, J., Kukkadapu, G., Brezinsky, K., Westbrook, C., "Experimental and modeling study of the pyrolysis and oxidation of an iso-paraffinic alcohol-to-jet fuel," Combustion and Flame, 2019, 201, 57-64. https://doi.org/10.1016/j.combustflame.2018.12.013
  83. Kang, D., Fridlyand, A., Goldsborough, S.S., Wagnon, S.W., Mehl, M., Pitz, W.J., McNenly, M.J., "Auto-ignition study of FACE gasoline and its surrogates at advanced IC engine conditions," Proceedings of the Combustion Institute, 2019, 37(4), 4699-4707. https://doi.org/10.1016/j.proci.2018.08.053
  84. Kim, D., Westbrook, C.K., Violi, A., "Two-stage ignition behavior and octane sensitivity of toluene reference fuels as gasoline surrogate," Combustion and Flame, 2019, 210, 100-113. https://doi.org/10.1016/j.combustflame.2019.08.019
  85. Koroglu, B., Mehl, M., Crowhurst, J.C., Zaug, J.M., Rose, T.P., Radousky, H.B., Armstrong, M.R., "Experimental and modeling study of chemical-based strategies for mitigating dust formation in fusion reactors," Plasma Physics and Controlled Fusion, 2019, 61(4), 45007. https://doi.org/10.1088/1361-6587/aaffe3
  86. Kukkadapu, G., Kang, D., Wagnon, S.W., Zhang, K., Mehl, M., Monge-Palacios, M., Wang, H., Goldsborough, S.S., Westbrook, C.K., Pitz, W.J., "Kinetic modeling study of surrogate components for gasoline, jet and diesel fuels: C7-C11 methylated aromatics," Proceedings of the Combustion Institute, 2019, 37(1), 521-529. https://doi.org/10.1016/j.proci.2018.08.016
  87. Lapointe, S., Zhang, K., McNenly, M.J., "Reduced chemical model for low and high-temperature oxidation of fuel blends relevant to internal combustion engines," Proceedings of the Combustion Institute, 2019, 37(1), 789-796. https://doi.org/10.1016/j.proci.2018.06.139
  88. Malliotakis, Z., Banyon, C., Zhang, K., Wagnon, S., Rodriguez Henriquez, J.J., Vourliotakis, G., Keramiotis, C., Founti, M., Mauss, F., Pitz, W.J., Curran, H., "Testing the validity of a mechanism describing the oxidation of binary n-heptane/toluene mixtures at engine operating conditions," Combustion and Flame, 2019, 199, 241-248. https://doi.org/10.1016/j.combustflame.2018.10.024
  89. Ninnemann, E., Kim, G., Laich, A., Almansour, B., Terracciano, A.C., Park, S., Thurmond, K., Neupane, S., Wagnon, S., Pitz, W.J., Vasu, S.S., "Co-optima fuels combustion: A comprehensive experimental investigation of prenol isomers," Fuel, 2019, 254, 115630. https://doi.org/10.1016/j.fuel.2019.115630
  90. Weng, J.-J., Tian, Z.-Y., Zhang, K.-W., Ye, L.-L., Liu, Y.-X., Wu, L.-N., Yu, D., Yang, J.-Z., Cao, C.-C., Zou, J.-B., "Experimental and kinetic investigation of pyrolysis and oxidation of nitromethane," Combustion and Flame, 2019, 203, 247-254. https://doi.org/10.1016/j.combustflame.2019.01.033
  91. Zhang, K., Banyon, C., Burke, U., Kukkadapu, G., Wagnon, S.W., Mehl, M., Curran, H.J., Westbrook, C.K., Pitz, W.J., "An experimental and kinetic modeling study of the oxidation of hexane isomers: Developing consistent reaction rate rules for alkanes," Combustion and Flame, 2019, 206, 123-137. https://doi.org/10.1016/j.combustflame.2019.04.011
  92. Zhang, K., Lokachari, N., Ninnemann, E., Khanniche, S., Green, W.H., Curran, H.J., Vasu, S.S., Pitz, W.J., "An experimental, theoretical, and modeling study of the ignition behavior of cyclopentanone," Proceedings of the Combustion Institute, 2019, 37(1), 657-665. https://doi.org/10.1016/j.proci.2018.06.097
  93. Koroglu, B., Wagnon, S., Dai, Z., Crowhurst, J.C., Armstrong, M.R., Weisz, D., Mehl, M., Zaug, J.M., Radousky, H.B., Rose, T.P., "Gas phase chemical evolution of uranium, aluminum, and iron oxides," Scientific Reports, 2018, 8(1), 10451. https://doi.org/10.1038/s41598-018-28674-6
  94. Padilla, R.E., Escofet-Martin, D., Pham, T., Pitz, W.J., Dunn-Rankin, D., "Structure and behavior of water-laden CH4/air counterflow diffusion flames," Combustion and Flame, 2018, 196, 439-451. https://doi.org/10.1016/j.combustflame.2018.06.037
  95. Wagnon, S.W., Thion, S., Nilsson, E.J.K., Mehl, M., Serinyel, Z., Zhang, K., Dagaut, P., Konnov, A.A., Dayma, G., Pitz, W.J., "Experimental and modeling studies of a biofuel surrogate compound: laminar burning velocities and jet-stirred reactor measurements of anisole," Combustion and Flame, 2018, 189, 325-336. https://doi.org/10.1016/j.combustflame.2017.10.020
  96. Wang, M., Zhang, K., Kukkadapu, G., Wagnon, S.W., Mehl, M., Pitz, W.J., Sung, C.-J., "Autoignition of trans-decalin, a diesel surrogate compound: Rapid compression machine experiments and chemical kinetic modeling," Combustion and Flame, 2018, 194, 152-163. https://doi.org/10.1016/j.combustflame.2018.04.019
  97. Westbrook, C.K., Mehl, M., Pitz, W.J., Kukkadapu, G., Wagnon, S., Zhang, K., "Multi-fuel surrogate chemical kinetic mechanisms for real world applications," Physical Chemistry Chemical Physics, 2018, 20(16), 10588-10606. https://doi.org/10.1039/c7cp07901j
  98. Westbrook, C.K., Sjöberg, M., Cernansky, N.P., "A new chemical kinetic method of determining RON and MON values for single component and multicomponent mixtures of engine fuels," Combustion and Flame, 2018, 195, 50-62. https://doi.org/10.1016/j.combustflame.2018.03.038
  99. Al Rashidi, M.J., Mármol, J.C., Banyon, C., Sajid, M.B., Mehl, M., Pitz, W.J., Mohamed, S., Alfazazi, A., Lu, T., Curran, H.J., Farooq, A., Sarathy, S.M., "Cyclopentane combustion. Part II. Ignition delay measurements and mechanism validation," Combustion and Flame, 2017, 183, 372-385. https://doi.org/10.1016/j.combustflame.2017.05.017
  100. Al Rashidi, M.J., Mehl, M., Pitz, W.J., Mohamed, S., Sarathy, S.M., "Cyclopentane combustion chemistry. Part I: Mechanism development and computational kinetics," Combustion and Flame, 2017, 183, 358-371. https://doi.org/10.1016/j.combustflame.2017.05.018
  101. Al Rashidi, M.J., Thion, S., Togbé, C., Dayma, G., Mehl, M., Dagaut, P., Pitz, W.J., Zádor, J., Sarathy, S.M., "Elucidating reactivity regimes in cyclopentane oxidation: Jet stirred reactor experiments, computational chemistry, and kinetic modeling," Proceedings of the Combustion Institute, 2017, 36(1), 469-477. https://doi.org/10.1016/j.proci.2016.05.036
  102. Atef, N., Kukkadapu, G., Mohamed, S.Y., Rashidi, M.A., Banyon, C., Mehl, M., Heufer, K.A., Nasir, E.F., Alfazazi, A., Das, A.K., Westbrook, C.K., Pitz, W.J., Lu, T., Farooq, A., Sung, C.-J., Curran, H.J., Sarathy, S.M., "A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics," Combustion and Flame, 2017, 178, 111-134. https://doi.org/10.1016/j.combustflame.2016.12.029
  103. Chen, Y., Mehl, M., Xie, Y., Chen, J.-Y., "Improved skeletal reduction on multiple gasoline-ethanol surrogates using a Jacobian-aided DRGEP approach under gasoline compression ignition (GCI) engine conditions," Fuel, 2017, 210, 617-624. https://doi.org/10.1016/j.fuel.2017.08.085
  104. Chen, Y., Wolk, B., Mehl, M., Cheng, W.K., Chen, J.-Y., Dibble, R.W., "Development of a reduced chemical mechanism targeted for a 5-component gasoline surrogate: A case study on the heat release nature in a GCI engine," Combustion and Flame, 2017, 178, 268-276. https://doi.org/10.1016/j.combustflame.2016.12.018
  105. Fridlyand, A., Johnson, M.S., Goldsborough, S.S., West, R.H., McNenly, M.J., Mehl, M., Pitz, W.J., "The role of correlations in uncertainty quantification of transportation relevant fuel models," Combustion and Flame, 2017, 180, 239-249. https://doi.org/10.1016/j.combustflame.2016.10.014
  106. Kolodziej, C.P., Pamminger, M., Sevik, J., Wallner, T., Wagnon, S.W., Pitz, W.J., "Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion," SAE International Journal of Fuels and Lubricants, 2017, 10(1), 82-94. https://doi.org/10.4271/2017-01-0671
  107. Koroglu, B., Mehl, M., Armstrong, M.R., Crowhurst, J.C., Weisz, D.G., Zaug, J.M., Dai, Z., Radousky, H.B., Chernov, A., Ramon, E., Stavrou, E., Knight, K., Fabris, A.L., Cappelli, M.A., Rose, T.P., "Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures," Review of Scientific Instruments, 2017, 88(9), 93506. https://doi.org/10.1063/1.5001346
  108. Ramalingam, A., Zhang, K., Dhongde, A., Virnich, L., Sankhla, H., Curran, H., Heufer, A., "An RCM experimental and modeling study on CH4 and CH4/C2H6 oxidation at pressures up to 160 bar," Fuel, 2017, 206, 325-333. https://doi.org/10.1016/j.fuel.2017.06.005
  109. Singh, E., Badra, J., Mehl, M., Sarathy, S.M., "Chemical Kinetic Insights into the Octane Number and Octane Sensitivity of Gasoline Surrogate Mixtures," Energy and Fuels, 2017, 31(2), 1945-1960. https://doi.org/10.1021/acs.energyfuels.6b02659
  110. Sun, W., Wang, G., Li, S., Zhang, R., Yang, B., Yang, J., Li, Y., Westbrook, C.K., Law, C.K., "Speciation and the laminar burning velocities of poly(oxymethylene) dimethyl ether 3 (POMDME3) flames: An experimental and modeling study," Proceedings of the Combustion Institute, 2017, 36(1), 1269-1278. https://doi.org/10.1016/j.proci.2016.05.058
  111. Szybist, J.P., Wagnon, S.W., Splitter, D., Pitz, W.J., Mehl, M., "The Reduced Effectiveness of EGR to Mitigate Knock at High Loads in Boosted SI Engines," SAE International Journal of Engines, 2017, 10(5), 2305-2318. https://doi.org/10.4271/2017-24-0061
  112. Westbrook, C.K., Mehl, M., Pitz, W.J., Sjöberg, M., "Chemical kinetics of octane sensitivity in a spark-ignition engine," Combustion and Flame, 2017, 175, 2-15. https://doi.org/10.1016/j.combustflame.2016.05.022
  113. Zhang, Y., Somers, K.P., Mehl, M., Pitz, W.J., Cracknell, R.F., Curran, H.J., "Probing the antagonistic effect of toluene as a component in surrogate fuel models at low temperatures and high pressures. A case study of toluene/dimethyl ether mixtures," Proceedings of the Combustion Institute, 2017, 36(1), 413-421. https://doi.org/10.1016/j.proci.2016.06.190
  114. Bissoli, M., Frassoldati, A., Cuoci, A., Ranzi, E., Mehl, M., Faravelli, T., "A new predictive multi-zone model for HCCI engine combustion," Applied Energy, 2016, 178, 826-843. https://doi.org/10.1016/j.apenergy.2016.06.062
  115. Mueller, C.J., Cannella, W.J., Bays, J.T., Bruno, T.J., Defabio, K., Dettman, H.D., Gieleciak, R.M., Huber, M.L., Kweon, C.-B., McConnell, S.S., Pitz, W.J., Ratcliff, M.A., "Diesel Surrogate Fuels for Engine Testing and Chemical-Kinetic Modeling: Compositions and Properties," Energy and Fuels, 2016, 30(2), 1445-1461. https://doi.org/10.1021/acs.energyfuels.5b02879
  116. Park, S., Ra, Y., Reitz, R.D., Pitz, W.J., Kurtz, E., "Development of a reduced tri-propylene glycol monomethyl ether- n -hexadecane-poly-aromatic hydrocarbon mechanism and its application for soot prediction," International Journal of Engine Research, 2016, 17(9), 969-982. https://doi.org/10.1177/1468087416632367
  117. Sarathy, S.M., Kukkadapu, G., Mehl, M., Javed, T., Ahmed, A., Naser, N., Tekawade, A., Kosiba, G., AlAbbad, M., Singh, E., Park, S., Rashidi, M.A., Chung, S.H., Roberts, W.L., Oehlschlaeger, M.A., Sung, C.-J., Farooq, A., "Compositional effects on the ignition of FACE gasolines," Combustion and Flame, 2016, 169, 171-193. https://doi.org/10.1016/j.combustflame.2016.04.010
  118. Sun, W., Yang, B., Hansen, N., Westbrook, C.K., Zhang, F., Wang, G., Moshammer, K., Law, C.K., "An experimental and kinetic modeling study on dimethyl carbonate (DMC) pyrolysis and combustion," Combustion and Flame, 2016, 164, 224-238. https://doi.org/10.1016/j.combustflame.2015.11.019
  119. Zhang, K., Glarborg, P., Zhou, X., Zhang, L., Ye, L., Dayma, G., "Experimental and Kinetic Modeling Study of Nitroethane Pyrolysis at a Low Pressure: Competition Reactions in the Primary Decomposition," Energy and Fuels, 2016, 30(9), 7738-7745. https://doi.org/10.1021/acs.energyfuels.6b01348
  120. Zhou, C.-W., Simmie, J.M., Pitz, W.J., Curran, H.J., "Toward the Development of a Fundamentally Based Chemical Model for Cyclopentanone: High-Pressure-Limit Rate Constants for H Atom Abstraction and Fuel Radical Decomposition," Journal of Physical Chemistry A, 2016, 120(36), 7037-7044. https://doi.org/10.1021/acs.jpca.6b03994